Severe malaria and microRNAs
A path towards new diagnostic and prevention tools for severe infectious pathologies

- Duration
- 01/01/2014 - 31/12/2017
- Coordinator
- Alfredo Mayor
- Funded by
- Instituto de Salud Carlos III - Unión Europea
In pediatrics, and especially in developing countries where diagnostic methods are scarce, some severe infectious diseases such as pneumonia (bacterial or viral) and severe malaria (SM) are difficult to distinguish clinically because of the lack of specifity of their symptoms.
The discovery of biomarkers specific for these severe pathologies is important for the development of new methods for the early identification of critically ill patients and their adequate therapeutic management. This is therefore a research area with a high potential for translation to clinical practice able to place Spain in a leading scenario in the fight against diseases of global impact.
Sequestration of Plasmodium falciparum in host organs through cytoadhesion of infected erythrocytes (IEs) to host receptors is a central pathogenic event mediated by parasite proteins expressed on the surface of the IEs (P. falciparum erythrocyte membrane protein 1 [PfEMP1]). The hypothesis of this project is that host tissues damaged by the sequestration of P. falciparum secrete microRNAs (a class of small endogenous RNAs that can regulate genes posttranscriptionally) different to the ones secreted during uncomplicated malaria or pneumonia.
The aim is therefore to identify a) microRNAs suitable to predict pathologies associated with SM or pneumonia that can be developed into diagnostic/ prognostic biomarkers and b) PfEMP1s involved in the sequestration of P. falciparum during SM which constitute targets for the prevention/treatment of SM. To achieve these objectives, miRNAs in plasma of African children with different clinical phenotypes (severe and uncomplicated malaria, bacterial or viral pneumonia; n=50/group) and in postmortem tissue biopsies will be detected by massive parallel sequencing, as well as clinically relevant PfEMP1s expressed by P. falciparum field isolates (n=100).
This research will allow the development of new methods for early diagnosis of diseases such as malaria and pneumonia, as well as innovative tools to prevent the sequestration of the malaria parasite and its adverse consequences.
Total funding
129.731,14 euros.
![]() |
Este proyecto está cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER). “Una manera de hacer Europa” |
Our Team
Coordinator
-
Alfredo Mayor Research Professor
Team
-
Enrique Bassat Orellana
-
MARIONA BUSTAMANTE Staff Scientist
-
-
Raquel González Alvarez
Other projects
R21 AI151459-01A1
Longitudinal Antibody Profiles Correlated with Protection from Malaria in Malawi
BASEMALVAC
Baseline host and environmental factors that impact pre-erythrocytic malaria vaccine (hypo)responsiveness in endemic regions
GlycoTargets
New antimalarial therapies targeting the glycosylation pathways of ‘Plasmodium falciparum’
CLIMSOCTRYPBOL
Insight on climate and social participatory research for integral management of vectorborne zoonosis caused by Trypanosoma cruzi and Leishmania spp. in the Bolivian Gran Chaco.
VaMonoS
Unravelling the heterogoneity and function of monocytes in vaccination and immunity to malaria
VivaxEVTalk
Extracellular Vesicles as Intercellular Communicators and Biomarkers of Cryptic Erythrocytic Infections in Plasmodium vivax malaria
RESPONSE
Mechanisms of the transcriptional responses to changes in the environment in the malaria parasite Plasmodium falciparum
MalTransc
Transcriptional regulation of adaptation and developmental decisions in malaria parasites: from epigenetic variation to directed transcriptional responses