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EXPOSOME
data challenges:

Correlated exposures
Multiple outcomes
Outcomes are related
Missing covariate data
Medium-large data size

NEW METHODS
wishlist:

Flexible
Interpretable by construction
Quantify uncertainty

Work with big data
Blackbox




A basic model for exposure effects

 One outcome for individual /
 (Covariates/confounders 7
 (saussian iid measurement errors
«  Unknown function # of several inputs (exposures) ud 2
 (aussian Process (GP) prior model for /4 N(O’ 7 )
» @GP with kernel K

h~GP0,K(--) K@az)=ep{—> pilz;— 1))

>> Computations via Markov chain Monte Carlo (MCMC)




A basic model for exposure effects
some key issues

 One outcome for individual / multiple & related T

| . yi = h(z;) + 2z, v+ &

« Covariates/confounders 2 some are missing

 (aussian iid measurement errors  what about counts, binary, discrete. ..

«  Unknown function # of several inputs (exposures wd 2
puts (exp ) some are correlated ei ~ N(0,02)

* (aussian Process (GP) prior model for #  scales poorly to big data

. GP with kernel X )

h~GP(0,K(- ")) K(x,x') = exp { —ij(:cj — o)’
S

J
>> Computations via Markov chain Monte Carlo (MCMC) inefficient, slow mixing/convergence



Jointly modeling multiple outcomes
_ . I .
r=1, ..., ¢ outcomes for individual / Yi,l = hl(w%1> T 2T &
Outcome-specific covariates/confounders 7
Gaussian iid measurement errors
Unknown outcome-specific functions h,., r=7,..., q Tiq = hq(mi’q) + 2,

GPs with outcome-specific kernel

h, ~ GP(()7 K'r(-7 )) K, (x,z") = exp —ij,r(lﬁj,r — a,.)?

independent outcomes?
no borrowing of information
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Jointly modeling multiple outcomes

r=1, ..., g outcomes for individual /
Outcome-specific covariates/confounders 7
Gaussian iid measurement errors

Unknown outcome-specific functions h,., r=17, ..., q

GPs with outcome-specific kernel

Yi1

Yiq

0 0] |hi(x;q) Z‘/Tl
0 +
0 1 hq (wz',q) ZIT([_

Y, = Iqh(CB,j) + Z,")’ + €;

hy ~ GP<O7 Kr('7 ))

independent outcomes?
no borrowing of information
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Jointly modeling multiple outcomes

r=1, ..., g outcomes for individual /
Outcome-specific covariates/confounders 7
Gaussian iid measurement errors

Unknown outcome-specific linear combinations

of functions h,., r=17 ..., k<q

|dentifiability constraints on A like in factor models

Yia

Yig

ap -

a([l .« ..

. a’lA — - — -

h&(.fl},“l) Z';l,_l

hkt<w‘i.k> ZT

Clqk

Y, = Ah(a:,) oE Z,’)/ = e;

hy ~ GP<O7 Kr('7 ))

Use k < g functions
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Missing covariate values & Covariates measured with error

 Imputing missing values is complicated
« Difficult to account for uncertainty if using 2-stage procedures (impute, then fit model)
» We can model outcome and covariate jointly

~

y; = hi(x;) + &

Example with 1 outcome ¥;
Yi = hz(%:) + @11h1(a3¢) + &

» Suppose ;/*is the covariate with missing values for some /

— . ——
* labelthatas outcome Y; 1e. y; = i function of linear effect of covariate
* Then this becomes a model with 2 outcomes the inputs on outcome
S . - S
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Missing covariate values & Covariates measured with error

 Imputing missing values is complicated
« Difficult to account for uncertainty if using 2-stage procedures (impute, then fit model)
» We can model outcome and covariate jointly
@;; - h1<337) + g?
Example with 1 outcome ¥;

» Suppose ;/*is the covariate with missing values for some /

y; = ho(x;) + ajrhi(x;) + €
H_J (& J

* labelthatas outcome Y; 1e. y; = i function of linear effect of covariate
* Then this becomes a model with 2 outcomes the inputs on outcome
A A

Y; = h(mq) —|—Z?;T’Y—|—8f,;

univariate model as seen before



Missing covariate values & Covariates measured with error

 Imputing missing values is complicated

« Difficult to account for uncertainty if using 2-stage procedures (impute, then fit model)

» We can model outcome and covariate jointly

Example with 1 outcome ¥;

» Suppose ;/*is the covariate with missing values for some /
« Label that as outcome ¥; ie. Ui = z;

» Then this becomes a model with 2 outcomes

Compactly:

Yi

1 0

ail 1
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. m . £ = 2

Multi-outcome model with latent Gaussian Processes

p covariates without

k GPs missing values
A —
qoutcomes { Y,; = Ah(ﬂ?,) a5 Z,"}’ e
- —

qxk matrix  d inputs
(with constraints)
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Suppose i = 1, ..., n subjects i1 ay - ayp| r T .
hl I A il
g outcomes (i) i1 v ;
Effective data dimension is nq
' ' hi(x; 1) AN I B £
Posterior computation scales as 0(n3g3 R I g LTal [T
p ( q ) _:ljl"(/_ -ai(l_l_ P (I’(l}\_

Yy, = Ah(x;) + Z;y + ¢

 Low-rank methods depend on defining 4nots
Common strategy (e.g. BKMR):

>> use low-rank aka “predictive” GPs =~ ===
(e.g. Banerjee et al 2008 JRSSB)

* Number of knots n* < n
* [ssues in approximating GP when d is large (input dimension)

 Oversmooth surfaces when n very large
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Scalability via spatial meshing

Meshed GPs
(MP et al 2020 JASA)
Take a set of knots with n* = n or even larger

Partition into disjoint blocks
Link partitions via “nice” directed acyclic graph (DAG)
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Scalability via spatial meshing

Meshed GPs
(MP et al 2020 JASA)

» Take a set of knots with n* = n or even larger
« Partition into disjoint blocks
* Link partitions via “nice” directed acyclic graph (DAG)

* Ingeostatistics (i.e.d = 2 ord = 3):
Meshed GP scales to data in the millions:
v" multivariate outcomes
v multi-type/non-Gaussian (counts, binary, discrete...)
v misaligned outcomes (different outcomes measured at different inputs)

v' parallel computing of expensive steps
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Scalability via spatial meshing

Meshed GPs
(MP et al 2020 JASA)

» Take a set of knots with n* = n or even larger

« Partition into disjoint blocks

* Link partitions via “nice” directed acyclic graph (DAG)

* Ingeostatistics (i.e.d = 2 ord = 3):

Meshed GP scales to data in the millions:

v" multivariate outcomes
v multi-type/non-Gaussian (counts, binary, discrete. ..)
v misaligned outcomes (different outcomes measured at different inputs)

v' parallel computing of expensive steps

collect all

-

h(z;) into vector h, then

p(h|p) =MVN(h;0, K )

g€Graph

g€Graph

BIG
SPATIAL MESHING

pasat

, conditional conditional
MVN(h, )

) .
mean varlalnce

small

p(h’q | hparents of g9 p)

.
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Scalability via spatial meshing on projected inputs (pi)

Meshed GPs TtMeshed GPs
(MP et al 2020 JASA) (MP et al, 2021+) AT
* Partitioning & building DAG is difficult when d > 2  (Construct low-dimensional space D* :
» Exposome data lacks natural spatial domain (build via PCA projection of inputs X or covanates Z) e
> No geolocation info {Longitude, Latitude} for partitioning! +Partition D* and map partitions to “nice” DAG - “fi—;’.’”“?'?;

« Number of exposures is d > 2

 Sparse DAG used only for scalability to big data!*

~ conditional conditional
p(h|p)= ]] MVN(h,; " )

) .
mean variance

» Exposures are correlated

on the f/input domain

*the GP kernels remain defined K, (@, @) = exp { Z P, — ) }

soon available as R package at
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Benchmarks (on 2000 MCMC iterations)

n\l\\/leéhﬂEd GP on EXPOSOME data meshed: :pimeshed bkmr: :kmbayes

// ﬁL ‘\]L | 1 outcome: 5.8 seconds 1 outcome: 188 seconds (32x slower)
TL /\/\ // 7 outcomes: 32 seconds 7 outcomes: N/A
AT
~———® .~ | Correlations across outcomes p covariates without
after accounting for covariates and exposures k GPs missing values
A Pt
overweight R
g q outcomes { Y, = Ah(m,) -+ Z,"}’ =7
' -
hs_zbmi_who .
gk matrix @ Inputs
hs_wgtgain_None Correlation
1.00
0.75
hs_c_weight_None 0.50 . d — 17 exposures X
0.25
e ¢ helght None 0.00 * p = 9 covariates/confounders with non-missing data Z
» n = 1227 subjects of which 1076 with fully observed outcomes
h_mbmi_None * g = 7 outcomes, of which 4 from covariates with missing data
. » Effective data size ng = 8589
_ - k=4
" - - " e
e e N e - v\\ 7\"*&7—~
_ g
./ : _ " .
: / = _— 4 - b . \ 17 / 20
e = £ '
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TtMeshed GP on EXPOSOME data

| € —
g "L Ay

/ “‘ - hs_child_age_None -
s

| h_parity_None2
T

h_parity_Nonel

h_native_None2

h_native_Nonel

h_edumc_None3

h_edumc_None2

h_cohort6

h_cohort5

h_cohort4

h_cohort3

h_cohort2

h_cohortl

h_age_None

e3_yearbir_None2009

e3_yearbir_None2008

e3 _yearbir_None2007

e3_yearbir_None2006

e3_yearbir_None2005 -
e3_yearbir_None2004

e3_sex_None

e3_gac_None .

’Y coefficients on the covariates/confounders Z
for each outcome & accounting for
- correlations across outcomes
- exposure effects

Reg. coeff.
(norm)
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Benchmarks (on 2000 MCMC iterations)

meshed: :pimeshed
1 outcome: 5.8 seconds
7 outcomes: 32 seconds

bkmr: :kmbayes
1 outcome: 188 seconds (32x slower)
7 outcomes: N/A

p covariates without
k GPs missing values

~ ~
q outcomes { Y, = Ah(ac,) + Zy+€;
S
qxk matrix @ inputs

* d = 17 exposures X

* p = 9 covariates/confounders with non-missing data Z

* n = 1227 subjects of which 1076 with fully observed outcomes
* g = 7 outcomes, of which 4 from covariates with missing data

» Effective data size nq = 8589

e k=4
Fh - R\ ar—
e VPR AN | 77



TtMeshed GP on EXPOSOME data

Er
7L |

/ rhs_sumPCBSS_madj_Logz
/'\ hs_sumPCBs5_cadj_Log2
hs_pcb180_madj_Log2
hs_pcb180_cadj_Log2
hs_pcb170_madj_Log2
hs_pcb170_cadj_Log2
hs_pcb153_madj_Log2
hs_pcb153_cadj_Log2
hs_pcb138_madj_Log2
hs_pcb138_cadj_Log2

hs_pcb118 madj_Log2

hs_pcbl18 cadj_Log2
hs_ndvil00 s None
hs_ndvil00_h_None
hs_mvpa_prd_alt_None
hs_KIDMED_None

™ hs_dif_hours_total_None

Pj.r parameters for exposures
appearing on the GP kernels

N

Koz, @) =eop{ = piolej, —),)’
J

Exposure
param

l 1.00
0.50
. 0.25

0.75

5%, & :
. * \ - -

Benchmarks (on 2000 MCMC iterations)

meshed: :pimeshed bkmr: :kmbayes
1 outcome: 5.8 seconds 1 outcome: 188 seconds (32x slower)
7 outcomes: 32 seconds 7 outcomes: N/A

p covariates without
k GPs missing values
A A

qoucomes { y; = Ah(x;) + Z;7y + €
el
qxk matrix @ inputs

* d = 17 exposures X

* p = 9 covariates/confounders with non-missing data Z

» n = 1227 subjects of which 1076 with fully observed outcomes
* g = 7 outcomes, of which 4 from covariates with missing data

» Effective data size ng = 8589

* k= 4 latent GP factors
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Thank you!

Meshed GPs: PM, Banerjee S, Finley AO (2020).

Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains.

JASA in press [doi.org/10.1080/01621459.2020.1833889]

GriPS for Meshed GPs: PM, Banerjee S, Dunson DB, Finley AO (2021).
Grid-Parametrize-Split (GriPS) for Improved Scalable Inference in Spatial Big Data Analysis
[arxiv.org/abs/2101.03579]

SPAMTREES: PM & Dunson DB (2020).
Spatial Multivariate Trees for Big Data Bayesian Regression
[arxiv.org/abs/2012.00943]

Melange (meshed Riemannian-manifold Langevin algorithms) PM & Dunson DB (2021+).
Spatial Meshing for General Bayesian Multivariate Models
[soon]
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