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1 Introduction

This document is a guide for the R package optimalAllocation usage, which provides the
optimal combination of number of participants and number of repeated measurements in
observational longitudinal studies such that the power to detect the hypothesized effect is
maximized without exceeding a fixed budget, or the cost of the study is minimized while
achieving a certain target power. The response variable covariance structure is assumed
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damped exponential, DEX(θ, σ, ρ), whose covariance matrix has diagonal elements σ2

and off–diagonal [j, j′] elements, σ2ρ|
j′−j
r
|θ where ρ is the correlation between the first

and the last response measurements and θ ∈ [0, 1] is the damping parameter (θ = 0 corre-
sponds to compound symmetry (CS); θ = 1 corresponds to first order autoregressive), σ2

is the residual variance and ρ is the correlation between the response at the first measure-
ment and at the measurement at the end of follow-up. The exposure is assumed binary
and can be time-varying. Two response patterns are considered under the alternative hy-
pothesis, one assuming an acute and transient effect through a constant mean difference
(CMD) between exposed and non-exposed, and the other a cumulative effect through
a linearly divergent difference (LDD). Missing data due to dropout are allowed, consid-
ering a monotone dropout pattern, i.e., that losing one individual measurement implies
losing all the subsequent measurements of that individual. No missing data at the first
measurement is assumed. The methodology is described in the manuscript [1]. In this
guide, the usage of the package is illustrated with some examples, including an applica-
tion to a study relating cleanning tasks and respiratory health [2]. The optimalAllocation
package can be downloaded at http://www.creal.cat/xbasagana/software.html.

2 Getting started

We can start the R session loading the package as follows:

> library(optimalAllocation)

2.1 The function OA()

We can get information about the function OA(), which performs the study design cal-
culations:

> ?OA

The input parameters for the function OA() are:

• target: "maxPower" for maximizing the power or "minCost" for minimizing the
total cost of the study.

• pattern: Response pattern under the alternative hypothesis. "CMD" assumes an
acute and transient exposure effect while "LDD" assumes a cumulative exposure
effect, i.e., an exposure-time interaction.

• rMax: Maximum value of the number of repeated measurements avaluated. Note
that the value of rMax exponentially increases the computational time.

• theta: Damping parameter of the damped exponential covariance structure of
the response. The structure is compound symmetry if theta = 0 and first order
autoregressive if theta = 1.
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• rho: Correlation between the response at the first measurement and at the mea-
surement at the end of follow-up.

• sigma2: The response residual variance, σ2.

• rhoe: Intraclass correlation of the exposure:

ρe =
sum(ΣE)− Tr(ΣE)

rTr(ΣE)
,

where sum() and Tr() denote the sum of the elements and the trace of a matrix
respectively [3]. ρe can be interpreted as a measure of within-participant variation
of exposure. When ρe takes its maximum value of one, each of the participants are
either exposed or non exposed for the entire follow-up (i.e., the exposure is time-
invariant). Conversely, when ρe takes its minimum value, the within-participant
variation of exposure is greatest [3]. The upper bound of ρe is lower than 1 when
the exposure prevalence is time-varying [4] and 1 otherwise. For binary variables,
as here, the lower bound of ρe is

−1
r

+
frac((r + 1)p̄e) [1− frac((r + 1)p̄e)]

r(r + 1)p̄e(1− p̄e)

where frac(x) denotes the fractional (non-integer) part of x and p̄e is the mean
exposure prevalence [6]. When the exposure covariance structure, ΣE , is CS and
the exposure prevalence is constant, ρe becomes the common off-diagonal term of
the exposure correlation matrix. As a tool for deciding an appropriate value for
ρe at the study design phase, it can be useful to explore the distribution of the
number of exposed periods per participant, once the values of ρe, p̄e, and r have
been fixed and ΣE is assumed to follow CS. For this purpose, the package includes
the functions plotExposedPeriods() and its interactive version, plotExposedPe-
riodsInt() (Section 2.2).

• pe0: Exposure prevalence at the first measurement.

• per: Exposure prevalence at the end of follow-up. Exposure prevalence can linearly
vary from pe0 to per. If per is equal to pe0, the exposure prevalence is assumed
to be constant.

• piM: Fraction of individuals lost at the end of the study. The dropout pattern is
assumed to be monotone, i.e. losing one individual measurement implies losing
all the subsequent measurements of that individual. No missing data at the first
measurement is assumed.

• kappa: Ratio between the cost of the first measurement (including recruitment)
and each of the subsequent ones.

• budget: Total budget for the study if target = "maxPower".
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• c1: Cost of the first measurement (including recruitment).

• reqPower: Required power if target = "minCost".

• beta: Expected effect under the alternative hypothesis. If pattern = "CMD", beta
can be interpreted as the expected difference in the mean of the response variable,
at any time point, between exposed and non-exposed. If the pattern = "LDD",
beta can be interpreted as the expected difference in the mean of the response
variable between the worst exposure pattern (i.e., exposed at all measurements)
and non exposed, at the end of follow-up.

• alpha: Significance level.

2.2 The functions plotExposedPeriods() and plotExposedPeriodsInt()

The function plotExposedPeriods() plots the distribution of the number of exposed
periods per participant, once the values of the exposure intraclass correlation, ρe, the
constant exposure prevalence, pe, and the number of repeated measurements, r, have
been fixed and the exposure covariance structure is assumed to follow CS [5]. This is
equivalent to the distribution of the sum of r+1 non-independent Bernoulli(pe) variables
with correlation ρe for each possible pair of them. The plot obtained is a tool to decide
the exposure intraclass correlation value.

We can get information about the function plotExposedPeriods():

> ?plotExposedPeriods

The input parameters for the function plotExposedPeriods() are:

• r: Number of repeated measurements, i.e., the total number of measurements is r
+ 1.

• pe: Exposure prevalence, assumed constant.

• rhoe: Exposure intraclass correlation, defined in Section 2.1.

• eps: Precision in the results (relative error). Default value is 0.001.

• maxIter: Maximum number of iterations for the computation of the distribution.
Default value is 1000.

For example, fixing the number of repeated measurements at 3 and assuming a
constant exposure prevalence of 0.2, we can explore the distribution of the number of
exposed periods for several values of the exposure intraclass correlation with the code:

> rhoes <- c(-0.2, 0, 0.5, 0.9)

> par(las = 1, mfrow = c(2, 2))

> for (i in 1:4)

+ plotExposedPeriods(r = 3, pe = 0.2, rhoe = rhoes[i])
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which provides the Figure 1. Thus, the value of ρe can be fixed at a value that provides
a reasonable distribution for the number of exposed periods per participant in the study
population.

The function plotExposedPeriodsInt() is an interactive version of the function
plotExposedPeriods() which dinamically updates the distribution of the number of
exposed periods when the user changes the value of ρe using a scroll bar.
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Figure 1: Distribution of the number of exposed periods per participant for several values
of the exposure intraclass correlation. The number of repeated measurements was fixed
at 3 and a constant exposure prevalence of 0.2 was assumed. The exposure covariance
structure was assumed to follow CS.
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3 Longitudinal study design examples

3.1 Study 1. Maximizing power

Suppose we are interested in maximizing the power of a longitudinal study assuming
the CMD response pattern without exceeding a budget of 40 monetary units, where the
monetary unit is the cost of the first measurement. The cost of the first measurement
is κ = 3 times the cost of the subsequent ones. The response covariance structure is
DEX(σ = 1, ρ = 0.7, θ = 0.5). The exposure intraclass correlation is ρe = 0.2. The
expected proportion of dropout at the end of the study is πM = 0.2. The exposure
prevalence is assumed to increase linearly from pe0 = 0.2 at the first measurement to
per = 0.3 at the last measurement. The effect size to be detected is β = −0.3 and the
significance level is fixed at α = 0.05. The maximum number of repeated measurements
allowed is rmax = 20. Thus, we can perform the study calculations and store the results
in the object study1:

> study1 <- OA(target = "maxPower", pattern = "CMD", rMax = 20,

+ theta = 0.5, rho = 0.7, sigma2 = 1, rhoe = 0.2, pe0 = 0.2,

+ per = 0.3, piM = 0.2, kappa = 3, budget = 40, c1 = 1,

+ beta = -0.3, alpha = 0.05)

> study1

Results subject to r not greater than 20:
-----------------------------------------------------
Optimal total number of measurements (r+1): 20
Optimal number of participants (N) : 6
Maximized power : 0.9670238

Thus, the optimal is to perform a longitudinal study with Nopt = 6 participants and
taking ropt + 1 = 20 measurements. The maximized power of such study is 0.97.

A graphical representation can be obtained with the function plot(). For instance,

> plot(study1)

generates Figure 2, which shows that the optimal strategy is to take as many mea-
surements as possible, as well as departures from the optimal design when varying the
number of repeated measurements.

Further results, including the estimated standard error of β, can be obtained with
the function summary():

> summary(study1)

$roptreal
[1] 20

$ropt
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Figure 2: Maximized power and number of participants (in brackets) as a function of
the total number of measurements per participant. The arrow points to the optimal
allocation.
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[1] 0.07897415

$parameters
target pattern rMax theta rho sigma2 rhoe pe0 per piM kappa budget c1 beta alpha

1 maxPower CMD 20 0.5 0.7 1 0.2 0.2 0.3 0.2 3 40 1 -0.3 0.05

$f
r N power

1 0 40 0.1148722
2 1 31 0.2291079
3 2 25 0.3686537
4 3 21 0.4887750
5 4 18 0.5829804
6 5 16 0.6643834
7 6 14 0.7166546
8 7 13 0.7766321
9 8 11 0.7857411
10 9 10 0.8143079
11 10 10 0.8682019
12 11 9 0.8784733
13 12 8 0.8809511
14 13 8 0.9142015
15 14 7 0.9072734
16 15 7 0.9322918
17 16 6 0.9178524
18 17 6 0.9384925
19 18 6 0.9546310
20 19 6 0.9670238
21 20 5 0.9495415

3.2 Study 2. Minimizing cost

Suppose now we are interested in minimizing the cost of a longitudinal study assuming
the LDD response pattern and achieving a power of at least 0.8. The cost of the first
measurement is c1 = 50 monetary units, which is κ = 3 times the cost of the subsequent
ones. The response covariance structure is CS(σ = 1, ρ = 0.6). The exposure intraclass
correlation is ρe = 0.6. The expected proportion of dropout at the end of the study is
πM = 0.2. The exposure prevalence is assumed to be constant and equal to 0.2. The
effect size to be detected is β = 0.8 and the significance level is fixed at α = 0.05.
The maximum number of repeated measurements allowed is rmax = 20. Thus, we can
perform the study calculations and store the results in the object study2:

> study2 <- OA(target = "minCost", pattern = "LDD", rMax = 20,

+ theta = 0, rho = 0.6, sigma2 = 1, rhoe = 0.6, pe0 = 0.2,
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+ per = 0.2, piM = 0.2, kappa = 3, reqPower = 0.8, c1 = 50,

+ beta = 0.8, alpha = 0.05)

> study2

Results subject to r not greater than 20:
-----------------------------------------------------
Optimal total number of measurements (r+1): 2
Optimal number of participants (N) : 66
Minimized cost : 4180

Thus, the optimal is to perform a longitudinal study with Nopt = 66 participants and
taking ropt + 1 = 2 measurements. The minimized cost of such study is 4180 monetary
units. Figure 3 has been obtained using the function plot() as in the previous section.
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Figure 3: Minimized cost and number of participants (in brackets) as a function of
the total number of measurements per participant. The arrow points to the optimal
allocation.
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4 Particular case: cross-sectional study design

The function OA() can also be used for a cross-sectional study design. In this case, we
should fix pattern = "CMD" and rMax = 0, as shown in the two following examples.

4.1 Study 3. Cost of a cross-sectional study

Suppose we are interested in finding the cost of a cross-sectional study achieving a power
of at least 0.9 to detect an effect size β = −0.3 with a significance level α = 0.05. The cost
of the unique measurement per participant is c1 = 25 monetary units. The proportion
of exposed is assumed to be 0.3 and the residual variance is estimated in σ = 1. Thus,
the study calculations are:

> study3 <- OA(target = "minCost", pattern = "CMD", rMax = 0, sigma2 = 1,

+ pe0 = 0.3, reqPower = 0.9, c1 = 25, beta = -0.3,

+ alpha = 0.05)

> study3

Results subject to a cross-sectional design:
-----------------------------------------------------
Number of participants (N): 556
Cost : 13900

Thus, the required number of participants is N = 556 and the total cost is 13900
monetary units.

4.2 Study 4. Power of a cross-sectional study

Suppose we are interested in finding the power of a cross-sectional study to detect an
effect size β = −0.3 with a significance level α = 0.05. The total budget for the study is
10000 monetary units and the cost of the unique measurement per participant is c1 = 25
monetary units. The proportion of exposed is assumed to be 0.2 and the residual variance
is estimated in σ = 1. Thus, the study calculations are:

> study4 <- OA(target = "maxPower", pattern = "CMD", rMax = 0, sigma2 = 1,

+ pe0 = 0.2, budget = 10000, c1 = 25, beta = -0.3,

+ alpha = 0.05)

> study4

Results subject to a cross-sectional design:
-----------------------------------------------------
Number of participants (N): 400
Power : 0.6700445

Thus, the required number of participants is N = 400 and the achieved power is 0.67.
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5 Illustrative example

In this section, we used data from a study on cleaners and respiratory health to provide
an optimal design for a new hypothetical study on the same topic. Briefly, Medina-
Ramón et al. [2] followed a group of N = 43 female domestic cleaners during r+ 1 = 15
days. Each day, they provided measures of pulmonary function and annotated in a
diary whether they performed certain cleaning tasks or used certain cleaning products.
The study was observational and therefore the exposures were not assigned by design,
rather, the cleaners performed the tasks and used the products that their work day
required. All exposures showed day-to-day variations within-subjects. Here, we focus
on the two exposures that had the highest and lowest value of ρe, namely vacuum
cleaning and using air freshener sprays. The first one had ρe = 0.13 and an average
prevalence of p̄e = 0.37 while the second had ρe = 0.60 and p̄e = 0.17. As expected, the
prevalence of the exposures showed no trend so we assumed a constant prevalence of the
exposures. Thirty-one participants in the original study provided complete data, so we
set πM = 0.28. The residual variance and the response covariance damping parameter
were taken from the study and set to σ2 = 0.43 and θ = 0.12, respectively. We used
low (0.3) and high (0.7) values for ρ. Regarding the hypothesized effect, we fixed it at
a difference of 10% in the expected mean value of the response between exposed and
non exposed assuming the CMD response pattern. This results in β̃ = −0.39. The
objective was to minimize the total cost of the study fixing a minimum required power
of 0.9. The first measurement was assumed to be 2 times more expensive than each of
the subsequent ones (i.e., κ = 2). We constrained the maximum number of repeated
measurements to 20. All calculations were performed fixing a significance level α = 0.05.

Then, all calculations for the study design in each scenario can be performed with
the following code:

> # Creating scenarios:

>

> res <- expand.grid(Exposure = c("Vacuuming", "Air freshener sprays"),

+ rho = c(0.3, 0.7))

> res$pe0 <- 0.37

> res$pe0[res$Exposure == "Air freshener sprays"] <- 0.17

> res$per <- res$pe0

> res$rhoe <- 0.13

> res$rhoe[res$Exposure == "Air freshener sprays"] <- 0.60

> res$TimeVaryingExposure <- TRUE

> aux <- res

> aux$TimeVaryingExposure <- FALSE

> aux$rhoe <- 1

> res <- rbind(res, aux)

> res$r <- NA

> res$N <- NA

> res$cost <- NA
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> # Sorting the table:

> ord <- order(res$Exposure, res$rho, 1 - res$TimeVaryingExposure)

> res <- res[ord, ]

> rownames(res) <- NULL

> res

Exposure rho pe0 per rhoe TimeVaryingExposure r N cost
1 Vacuuming 0.3 0.37 0.37 0.13 TRUE NA NA NA
2 Vacuuming 0.3 0.37 0.37 1.00 FALSE NA NA NA
3 Vacuuming 0.7 0.37 0.37 0.13 TRUE NA NA NA
4 Vacuuming 0.7 0.37 0.37 1.00 FALSE NA NA NA
5 Air freshener sprays 0.3 0.17 0.17 0.60 TRUE NA NA NA
6 Air freshener sprays 0.3 0.17 0.17 1.00 FALSE NA NA NA
7 Air freshener sprays 0.7 0.17 0.17 0.60 TRUE NA NA NA
8 Air freshener sprays 0.7 0.17 0.17 1.00 FALSE NA NA NA

> # Optimal allocation calculations

> # for all scenarios:

>

> studies <- list()

> for (i in 1:nrow(res))

+ {

+ studies[[i]] <- OA(target = "minCost", pattern = "CMD", rMax = 20,

+ theta = 0.12, rho = res$rho[i], sigma2 = 0.43,

+ rhoe = res$rhoe[i], pe0 = res$pe0[i], per = res$per[i],

+ piM = 0.28, kappa = 2, reqPower = 0.9, c1 = 1,

+ beta = -0.39, alpha = 0.05)

+ res$r[i] <- studies[[i]]$ropt

+ res$N[i] <- studies[[i]]$Nopt

+ res$cost[i] <- round(studies[[i]]$minCost, 1)

+ }

> # Results:

>

> studyDesigns <- res[, -c(3:5)]

> studyDesigns

Exposure rho TimeVaryingExposure r N cost
1 Vacuuming 0.3 TRUE 18 6 51.6
2 Vacuuming 0.3 FALSE 1 92 125.1
3 Vacuuming 0.7 TRUE 15 3 22.0
4 Vacuuming 0.7 FALSE 0 128 128.0
5 Air freshener sprays 0.3 TRUE 20 17 160.7
6 Air freshener sprays 0.3 FALSE 1 152 206.7
7 Air freshener sprays 0.7 TRUE 19 8 72.2
8 Air freshener sprays 0.7 FALSE 0 211 211.0
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Results reveal, in some scenarios, a notable discrepancy in both the optimal number of
repeated measurements and optimal number of participants between the assumptions of
a time-invariant exposure (i.e., ρe = 1) and a time-varying exposure (using the observed
value of ρe). In the scenarios with ρ = 0.7, when using the observed value of ρe, the
optimal design was to take a high number of measurements (15 for vacuum cleaning and
19 for using air freshener sprays) while, assuming ρe = 1, the optimal was to perform a
cross-sectional study. Thus, incorrectly using the design formulas for ρe = 1 when the
exposure is actually time-varying can lead to discrepancies not only in ropt and Nopt,
but also in the final cost of the study. For example, in the scenarios with ρ = 0.7, using
the time-invariant exposure formulas leads to designs with an increase in cost of 192%
for using air freshener sprays, and of 482% for vacuum cleaning.
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Figure 4: Minimized cost and number of participants (in brackets) as a function of
the total number of measurements per participant. The arrow points to the optimal
allocation.

In some cases, the slope of the optimal cost as a function of r attenuates as r increases
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and thus, the investigator could be interested in increasing the number of participants
in exchange for reducing the number of repeated measurements without a significant
increase of the cost. In order to explore that, we can create the Figure 4 using the
following code:

> for (i in c(1,3,5,7))

+ {

+ plot(studies[[i]], Ncex = 0.5)

+ mtext(text = res$Exposure[i], side = 3, line = 1, cex = 0.8)

+ mtext(text = bquote(paste(rho, sep = "") ==. (res$rho[i])),

+ side = 3, line = 0, cex = 0.8)

+ }

In fact, Figure 4 shows how, for large values of r (in scenarios where ρ = 0.7), the
investigator can increase the number of participants in exchange for reducing the number
of repeated measurements without a significant increase of the cost.
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